Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(3): 1701-1733, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38290426

RESUMO

The drug discovery landscape has undergone a significant transformation over the past decade, owing to research endeavors in a wide range of areas leading to strategies for pursuing new drug targets and the emergence of novel drug modalities. NMR spectroscopy has been a technology of fundamental importance to these research pursuits and has seen its use expanded both within and outside of traditional medicinal chemistry applications. In this perspective, we will present advancement of NMR-derived methods that have facilitated the characterization of small molecules and novel drug modalities including macrocyclic peptides, cyclic dinucleotides, and ligands for protein degradation. We will discuss innovations in NMR spectroscopy at the chemistry and biology interface that have broadened NMR's utility from hit identification through lead optimization activities. We will also discuss the promise of emerging NMR approaches in bridging our understanding and addressing challenges in the pursuit of the therapeutic agents of the future.


Assuntos
Descoberta de Drogas , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Descoberta de Drogas/métodos , Ligação Proteica , Química Farmacêutica , Ligantes , Ressonância Magnética Nuclear Biomolecular/métodos
2.
MAbs ; 15(1): 2212416, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37218059

RESUMO

Excipients are added to biopharmaceutical formulations to enhance protein stability and enable the development of robust formulations with acceptable physicochemical properties, but the mechanism by which they confer stability is not fully understood. Here, we aimed to elucidate the mechanism through direct experimental evidence of the binding affinity of an excipient to a monoclonal antibody (mAb), using saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopic method. We ranked a series of excipients with respect to their dissociation constant (KD) and nonspecific binding constants (Ns). In parallel, molecular dynamic and site identification by ligand competitive saturation (SILCS)-Monte Carlo simulations were done to rank the excipient proximity to the proteins, thereby corroborating the ranking by STD NMR. Finally, the excipient ranking by NMR was correlated with mAb conformational and colloidal stability. Our approach can aid excipient selection in biologic formulations by providing insights into mAb-excipient affinities before conventional and time-consuming excipient screening studies are conducted.


Assuntos
Produtos Biológicos , Excipientes , Anticorpos Monoclonais/química , Espectroscopia de Ressonância Magnética/métodos , Conformação Molecular
3.
MAbs ; 14(1): 2124902, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36166705

RESUMO

ALPHABETICAL LIST OF ABBREVIATIONS: Fab Fragment antigen-binding; Fc Fragment crystallizable; HMW High molecular weight; ∆HMW Difference between HMW species at stress temperature and 5°C controls; IgG Immunoglobulin G; mAbs Monoclonal antibodies; MV-VHH Multivalent VHH molecule with the format aC-L1-aC-L1-aD; NMR Nuclear magnetic resonance; scFv Single-chain fragment variable; SEC Size-exclusion chromatography; VHH Variable domain of Heavy chain of Heavy chain-only antibody.


Assuntos
Excipientes , Cadeias Pesadas de Imunoglobulinas , Anticorpos Monoclonais , Fragmentos Fab das Imunoglobulinas , Fragmentos Fc das Imunoglobulinas , Imunoglobulina G , Cadeias Pesadas de Imunoglobulinas/química , Espectroscopia de Ressonância Magnética
4.
Mol Pharm ; 19(9): 3267-3278, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35917158

RESUMO

Antimicrobial preservatives are used as functional excipients in multidose formulations of biological therapeutics to destroy or inhibit the growth of microbial contaminants, which may be introduced by repeatedly administering doses. Antimicrobial agents can also induce the biophysical instability of proteins and peptides, which presents a challenge in optimizing the drug product formulation. Elucidating the structural basis for aggregation aids in understanding the underlying mechanism and can offer valuable knowledge and rationale for designing drug substances and drug products; however, this remains largely unexplored due to the lack of high-resolution characterization. In this work, we utilize solution nuclear magnetic resonance (NMR) as an advanced biophysical tool to study an acylated 31-residue peptide, acyl-peptide A, and its interaction with commonly used antimicrobial agents, benzyl alcohol and m-cresol. Our results suggest that acyl-peptide A forms soluble octamers in the aqueous solution, which tumble slowly due to an increased molecular weight as measured by diffusion ordered spectroscopy and 1H relaxation measurement. The addition of benzyl alcohol does not induce aggregation of acyl-peptide A and has no chemical shift perturbation in 1H-1H NOESY spectra, suggesting no detectable interaction with the peptide. In contrast, the addition of 1% (w/v) m-cresol results in insoluble aggregates composed of 25% (w/w) peptides after a 24-hour incubation at room temperature as quantified by 1H NMR. Interestingly, 1H-13C heteronuclear single-quantum coherence and 1H-1H total correlation experiment spectroscopy have identified m-cresol and peptide interactions at specific residues, including Met, Lys, Glu, and Gln, suggesting that there may be a combination of hydrophobic, hydrogen bonding, and electrostatic interactions with m-cresol driving this phenomenon. These site-specific interactions have promoted the formation of higher-order oligomerization such as dimers and trimers of octamers, eventually resulting in insoluble aggregates. Our study has elucidated a structural basis of m-cresol-induced self-association that can inform the optimized design of drug substances and products. Moreover, it has demonstrated solution NMR as a high-resolution tool to investigate the structure and dynamics of biological drug products and provide an understanding of excipient-induced peptide and protein aggregation.


Assuntos
Anti-Infecciosos , Excipientes , Antibacterianos , Anti-Infecciosos/química , Álcool Benzílico/química , Excipientes/química , Peptídeos , Conservantes Farmacêuticos/química
5.
Methods Enzymol ; 667: 685-727, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35525559

RESUMO

Kinase inhibition continues to be a major focus of pharmaceutical research and discovery due to the central role of these proteins in the regulation of cellular processes. One family of kinases of pharmacological interest, due to its role in activation of immunostimulatory pathways, is the Janus kinase family. Small molecule inhibitors targeting the individual kinase proteins within this family have long been sought-after therapies. High sequence and structural similarity of the family members makes selective inhibitors difficult to identify but critical because of their inter-related multiple cellular regulatory pathways. Herein, we describe the identification of inhibitors of the important Janus kinase, TYK2, a regulator of type I interferon response. In addition, the biochemical and structural confirmation of the direct interaction of these small molecules with the TYK2 pseudokinase domain is described and a potential mechanism of allosteric regulation of TYK2 activity through stabilization of the pseudokinase domain is proposed.


Assuntos
Janus Quinases , TYK2 Quinase , Regulação Alostérica , Janus Quinases/metabolismo , Transdução de Sinais , TYK2 Quinase/química , TYK2 Quinase/metabolismo
6.
Chembiochem ; 21(3): 315-319, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31283075

RESUMO

NMR measurements of rotational and translational diffusion are used to characterize the solution behavior of a wide variety of therapeutic proteins and peptides. The timescales of motions sampled in these experiments reveal complicated intrinsic solution behavior such as flexibility, that is central to function, as well as self-interactions, stress-induced conformational changes and other critical attributes that can be discovery and development liabilities. Trends from proton transverse relaxation (R2 ) and hydrodynamic radius (Rh ) are correlated and used to identify and differentiate intermolecular from intramolecular interactions. In this study, peptide behavior is consistent with complicated multimer self-assembly, while multi-domain protein behavior is dominated by intramolecular interactions. These observations are supplemented by simulations that include effects from slow transient interactions and rapid internal motions. R2 -Rh correlations provide a means to profile protein motions as well as interactions. The approach is completely general and can be applied to therapeutic and target protein characterization.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Proteínas/química
7.
J Pharm Sci ; 109(1): 922-926, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31449814

RESUMO

Formulations that can increase the dissociation of insulin oligomers into monomers/dimers are important considerations in the development of ultra-rapid-acting insulins with faster onset and shorter duration of actions. Here we present a novel strategy to characterize the oligomeric states of insulin in solution that leverages the ability of nuclear magnetic resonance spectroscopy to assess higher-order structure of proteins in solution. The oligomeric structures and solution behaviors of 2 fast-acting insulins, aspart and lispro, with varying excipient concentrations were studied using 1D and diffusion profiling methods. These methods can provide insight on the structural differences and distributions of the molecular association states in different insulin formulations, which is consistent with other orthogonal biophysical characterization tools. In addition, these methods also highlight their sensitivity to subtle changes in solution behaviors in response to excipient that are difficult to monitor with other tools. This work introduces the utility of 1D and diffusion profiling methods to characterize the oligomeric assembly of fast-acting insulins, suggesting promising applications in compound screening, excipient selection, and formulation development of fast-acting insulins as well as other peptide or protein therapeutics.


Assuntos
Excipientes/química , Insulina Aspart/química , Insulina Lispro/química , Espectroscopia de Prótons por Ressonância Magnética , Difusão , Composição de Medicamentos , Conformação Proteica , Solubilidade
8.
Biochemistry ; 58(30): 3302-3313, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31283187

RESUMO

Thymidylate synthase (TS) is a dimeric enzyme conserved in all life forms that exhibits the allosteric feature of half-the-sites activity. Neither the reason for nor the mechanism of this phenomenon is understood. We used a combined nuclear magnetic resonance (NMR) and molecular dynamics approach to study a stable intermediate preceding hydride transfer, which is the rate-limiting and half-the-sites step. In NMR titrations with ligands leading to this intermediate, we measured chemical shifts of the apoenzyme (lig0), the saturated holoenzyme (lig2), and the typically elusive singly bound (lig1) states. Approximately 40 amides showed quartet patterns providing direct NMR evidence of coupling between the active site and probes >30 Å away in the distal subunit. Quartet peak patterns have symmetrical character, indicating reciprocity in communicating the first and second binding events to the distal protomer. Quartets include key catalytic residues and map to the dimer interface ß-sheet, which also represents the shortest path between the two active sites. Simulations corroborate the coupling observed in solution in that there is excellent overlap between quartet residues and main-chain atoms having intersubunit cross-correlated motions. Simulations identify five hot spot residues, three of which lie at the kink in the unique ß-bulge abutting the active sites on either end of the sheet. Interstrand cross-correlated motions become more organized and pronounced as the enzyme progresses from lig0 to lig1 and ultimately lig2. Coupling in the apparently symmetrical complex has implications for half-the-sites reactivity and potentially resolves the paradox of inequivalent TS active sites despite the vast majority of X-ray structures appearing to be symmetrical.


Assuntos
Multimerização Proteica/fisiologia , Timidilato Sintase/química , Timidilato Sintase/metabolismo , Domínio Catalítico/fisiologia , Conformação Proteica em Folha beta/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
9.
Chembiochem ; 20(7): 896-899, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30515922

RESUMO

Characterizing changes to structure and behavior is an important aspect of therapeutic protein development. NMR spectroscopy is well suited to study interactions and higher-order structure that could impact biological function and safety. We used NMR diffusion methods to describe the overall behavior of proteins in solution by defining a "diffusion profile" that captures the complexities in diffusion behavior. Diffusion profiles offer a simple means to interpret protein solution behavior as a distribution of sizes and association states. As a characterization method, diffusion profiling is well suited to complement and augment traditional biophysical and NMR methods to probe the solution behavior of therapeutic proteins.


Assuntos
Difusão , Proteínas/química , Ressonância Magnética Nuclear Biomolecular/métodos
10.
Proc Natl Acad Sci U S A ; 113(34): 9533-8, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27466406

RESUMO

Allosteric communication is critical for protein function and cellular homeostasis, and it can be exploited as a strategy for drug design. However, unlike many protein-ligand interactions, the structural basis for the long-range communication that underlies allostery is not well understood. This lack of understanding is most evident in the case of classical allostery, in which a binding event in one protomer is sensed by a second symmetric protomer. A primary reason why study of interdomain signaling is challenging in oligomeric proteins is the difficulty in characterizing intermediate, singly bound species. Here, we use an NMR approach to isolate and characterize a singly ligated state ("lig1") of a homodimeric enzyme that is otherwise obscured by rapid exchange with apo and saturated forms. Mixed labeled dimers were prepared that simultaneously permit full population of the lig1 state and isotopic labeling of either protomer. Direct visualization of peaks from lig1 yielded site-specific ligand-state multiplets that provide a convenient format for assessing mechanisms of intersubunit communication from a variety of NMR measurements. We demonstrate this approach on thymidylate synthase from Escherichia coli, a homodimeric enzyme known to be half-the-sites reactive. Resolving the dUMP1 state shows that active site communication occurs not upon the first dUMP binding, but upon the second. Surprisingly, for many sites, dUMP1 peaks are found beyond the limits set by apo and dUMP2 peaks, indicating that binding the first dUMP pushes the enzyme ensemble to further conformational extremes than the apo or saturated forms. The approach used here should be generally applicable to homodimers.


Assuntos
Nucleotídeos de Desoxiuracil/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Subunidades Proteicas/química , Timidilato Sintase/química , Regulação Alostérica , Sequência de Aminoácidos , Clonagem Molecular , Nucleotídeos de Desoxiuracil/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Modelos Moleculares , Mutação , Isótopos de Nitrogênio , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Especificidade por Substrato , Termodinâmica , Timidilato Sintase/genética , Timidilato Sintase/metabolismo
11.
J Am Chem Soc ; 137(45): 14260-3, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26517288

RESUMO

Thymidylate synthase (TSase) is a clinically important enzyme because it catalyzes synthesis of the sole de novo source of deoxy-thymidylate. Without this enzyme, cells die a "thymineless death" since they are starved of a crucial DNA synthesis precursor. As a drug target, TSase is well studied in terms of its structure and reaction mechanism. An interesting mechanistic feature of dimeric TSase is that it is "half-the-sites reactive", which is a form of negative cooperativity. Yet, the basis for this is not well-understood. Some experiments point to cooperativity at the binding steps of the reaction cycle as being responsible for the phenomenon, but the literature contains conflicting reports. Here we use ITC and NMR to resolve these inconsistencies. This first detailed thermodynamic dissection of multisite binding of dUMP to E. coli TSase shows the nucleotide binds to the free and singly bound forms of the enzyme with nearly equal affinity over a broad range of temperatures and in multiple buffers. While small but significant differences in ΔC°P for the two binding events show that the active sites are not formally equivalent, there is little-to-no allostery at the level of ΔG°bind. In addition NMR titration data reveal that there is minor intersubunit cooperativity in formation of a ternary complex with the mechanism based inhibitor, 5F-dUMP, and cofactor. Taken together, the data show that functional communication between subunits is minimal for both binding steps of the reaction coordinate.


Assuntos
Coenzimas/metabolismo , Escherichia coli/enzimologia , Timidilato Sintase/química , Timidilato Sintase/metabolismo , Regulação Alostérica , Sítios de Ligação , Tetra-Hidrofolatos/química , Tetra-Hidrofolatos/metabolismo , Termodinâmica , Uridina Monofosfato/análogos & derivados , Uridina Monofosfato/química , Uridina Monofosfato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...